4 research outputs found

    Osmotic controlled drug delivery system (OSMO technology) and its impact on diabetes care

    Get PDF
    Recently, focus on the development of controlled release drug delivery system has increased, as existing drugs exhibit certain pharmacokinetic limitations. The major goal of designing sustained release formulations is to improve the drug performance by prolonged duration of drug action, decreased frequency of dosing and reduced side effects by using smallest quantity of drug administered by the most suitable route. Osmotic-controlled release oral delivery system (OSMO technology) is the most promising strategy based system for sustained delivery of drug. Drug can be delivered in a controlled manner over a long period of time by the process of osmosis. Osmotic drug delivery system appears to be a promising solution for the limitations of conventional extended release formulations by virtue of their distinguished technological features. The present review describes briefly about various controlled drug delivery systems with special focus on advantages of osmotic-controlled release oral delivery system related to diabetes therapy and improved compliance

    Mechanical Properties of Differently Nanostructured and High-Pressure Compressed Hydroxyapatite-Based Materials for Bone Tissue Regeneration

    No full text
    Hydroxyapatite (HAp) has long been considered the gold standard in the biomedical field, considering its composition and close resemblance to human bone. However, the brittle nature of hydroxyapatite (HAp) biomaterial, constrained by its low fracture toughness (of up to 1.2 vs. 2–12 MPa m1/2 of human bone), remains one of the significant factors impairing its use in bone regeneration. In the present study, HAp nanoparticles synthesized by the solid-state (SHAp) and sonochemical (EHAp) approaches using eggshell-derived calcium hydroxide and ammonium dihydrogen orthophosphate as precursors are compared with those synthesized using commercially available calcium hydroxide and ammonium dihydrogen orthophosphate as precursors (CHAp) employing sonochemical method. The HAp samples were then compressed into compact materials using a uniaxial high-pressure compression technique at a preoptimized load and subsequently characterized for mechanical properties using the Vickers indentation method and compressive strength testing. The analysis revealed that the material with smaller particle size (30–40 nm) and crystalline nature (EHAp and CHAp) resulted in mechanically robust materials (σm = 54.53 MPa and 47.72 MPa) with high elastic modulus (E = 4011.1 MPa and 2750.25 MPa) and density/hardness-dependent fracture toughness (σf = 4.34 MPa m1/2and 6.57 MPa m1/2) than SHAp (σm =28.40 MPa, E = 2116.75 MPa, σf = 5.39 MPa m1/2). The CHAp material was found to be the most suitable for applications in bone regeneration

    Mechanical Properties of Differently Nanostructured and High-Pressure Compressed Hydroxyapatite-Based Materials for Bone Tissue Regeneration

    No full text
    Hydroxyapatite (HAp) has long been considered the gold standard in the biomedical field, considering its composition and close resemblance to human bone. However, the brittle nature of hydroxyapatite (HAp) biomaterial, constrained by its low fracture toughness (of up to 1.2 vs. 2–12 MPa m1/2 of human bone), remains one of the significant factors impairing its use in bone regeneration. In the present study, HAp nanoparticles synthesized by the solid-state (SHAp) and sonochemical (EHAp) approaches using eggshell-derived calcium hydroxide and ammonium dihydrogen orthophosphate as precursors are compared with those synthesized using commercially available calcium hydroxide and ammonium dihydrogen orthophosphate as precursors (CHAp) employing sonochemical method. The HAp samples were then compressed into compact materials using a uniaxial high-pressure compression technique at a preoptimized load and subsequently characterized for mechanical properties using the Vickers indentation method and compressive strength testing. The analysis revealed that the material with smaller particle size (30–40 nm) and crystalline nature (EHAp and CHAp) resulted in mechanically robust materials (σm = 54.53 MPa and 47.72 MPa) with high elastic modulus (E = 4011.1 MPa and 2750.25 MPa) and density/hardness-dependent fracture toughness (σf = 4.34 MPa m1/2and 6.57 MPa m1/2) than SHAp (σm =28.40 MPa, E = 2116.75 MPa, σf = 5.39 MPa m1/2). The CHAp material was found to be the most suitable for applications in bone regeneration
    corecore